QTL pyramiding for improving of cold tolerance at fertilization stage in rice
نویسندگان
چکیده
Vigorous cold tolerance at the fertilization stage (CTF) is a very important characteristic for stable rice production in cold temperature conditions. Because CTF is a quantitatively inherited trait, pyramiding quantitative trait loci (QTLs) using marker-assisted selection (MAS) is effective for improving CTF levels in rice breeding programs. We previously identified three QTLs controlling CTF, qCTF7, qCTF8 and qCTF12, using backcrossed inbred lines derived from a cross between rice cultivar Eikei88223 (vigorous CTF) and Suisei (very weak CTF). However, pyramiding of these QTLs for the application of MAS in practical rice breeding programs have not yet been elucidated. In this study, we examined the effect of pyramiding QTLs for improvement of CTF level using eight possible genotype classes from the 152 F3 population derived from a cross between Eikei88223 and Suisei. Increasing of CTF levels in combinations between qCTF7 and qCTF12 and between qCTF8 and qCTF12 were detected. Furthermore, we compared the haplotype pattern around the QTLs for CTF among the rice cultivars from Hokkaido. These results are useful for improvement of new cultivars with high CTF levels using MAS and identification of genetic resources with the novel QTL(s) for CTF.
منابع مشابه
Genetical and morphological characterization of cold tolerance at fertilization stage in rice
Cold temperature during the reproductive phase leads to seed sterility, which reduces yield and decreases the grain quality of rice. The fertilization stage, ranging from pollen maturation to the completion of fertilization, is sensitive to unsuitable temperature. Improving cold tolerance at the fertilization stage (CTF) is an important objective of rice breeding program in cold temperature are...
متن کاملEvaluation of salinity tolerance in rice genotypes
Salinity is considered as one of important physical factors influencing rice (Oryza sativa L.) production. Knowledge of salinity effects on rice seedling growth and yieldcomponents would improve management practices in fields andincrease our understanding of salt tolerance mechanisms in rice. This study was designed to assess the role of Saltol QTL in regards to effects of salinity on plant gro...
متن کاملGenetic Dissection and Simultaneous Improvement of Drought and Low Nitrogen Tolerances by Designed QTL Pyramiding in Rice
Drought and low nitrogen are the most common abiotic stresses limiting rice productivity in the rainfed rice areas of Asia and Africa. Development and adoption of green super rice (GSR) varieties with greatly improved drought tolerance (DT) and low nitrogen tolerance (LNT) are the most efficient way to resolve this problem. In this study, using three sets of trait-specific introgression lines (...
متن کاملSimultaneous Improvement and Genetic Dissection of Salt Tolerance of Rice (Oryza sativa L.) by Designed QTL Pyramiding
Breeding of multi-stress tolerant rice varieties with higher grain yields is the best option to enhance the rice productivity of abiotic stresses prone areas. It also poses the greatest challenge to plant breeders to breed rice varieties for such stress prone conditions. Here, we carried out a designed QTL pyramiding experiment to develop high yielding "Green Super Rice" varieties with signific...
متن کاملMapping of Quantitative Trait Loci Underlying Cold Tolerance in Rice Seedlings via High-Throughput Sequencing of Pooled Extremes
Low temperature is a major limiting factor in rice growth and development. Mapping of quantitative trait loci (QTLs) controlling cold tolerance is important for rice breeding. Recent studies have suggested that bulked segregant analysis (BSA) combined with next-generation sequencing (NGS) can be an efficient and cost-effective way for QTL mapping. In this study, we employed NGS-assisted BSA to ...
متن کامل